similar to the early results for tetrakis(pyridine)metal(II) ($\mathrm{Ni}, \mathrm{Fe}, \mathrm{Co}$) chloride complexes (Long \& Clarke, 1978).

The crystal structure is shown in Fig. 2. The structure consists of the host trans-diiodotetrakis(pyridine) complexes and the guest pyridine molecules. The host complexes form layers with I-Cd-I bonds parallel to a, held together by van der Waals forces between the coordinated pyridine molecules. The guest pyridine molecules are enclathrated in the cavities formed between the host layers. The cavity is surrounded by the ligating pyridine molecules and I atoms. It has a twofold axis of symmetry, and $2: 1$ is the maximum value for the guest/host molar ratio. The low measured density indicates partial occupancy of the guest pyridine sites, since clathrates are potentially nonstoichiometric. This is consistent with the large thermal parameters of the guest pyridine atoms $\mathrm{N}(3), \mathrm{C}(7)$, $\mathrm{C}(8), \mathrm{C}(9)$ in comparison with the complexed pyridine molecules of the host structure. The individual molecules of $\mathrm{Cd}(\mathrm{py})_{4} \mathrm{I}_{2}$ are remarkably well isolated from each other. No significant shortening of the intermolecular distances compared to the sum of the
van der Waals radii is observed. Only two are less than $3.6 \AA$: between $\mathrm{N}(3)$ of a guest pyridine molecule and $C(1)[3.581(10) \AA]$ and $C(2)[3.456(10) \AA]$ of a coordinated pyridine ligand.

Part of the cost of this research was met by a Scientific Research Grant from the Ministry of Education, No. 58470009 , to which the authors' thanks are due.

References

Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Long, G. J. \& Clarke, P. J. (1978). Inorg. Chem. 17, 1394-1401.
Pauling, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
Paulus, H. (1969). Z. Anorg. Allg. Chem. 369, 38-40.
Sakurai, T. \& Kobayashi, K. (1979). Rikagaku Kenkyusho Hokoku, 55, 69-77.
Schaeffer, W. D., Dorsey, W. S., Skinner, D. A. \& Christian, C. G. (1957). J. Am. Chem. Soc. 79, 5870-5876.

Structure of Tetrakis $\left[\mu\right.$-(β-alanine)- $\left.O, O^{\prime}\right]$-diaquadicopper(II) Tetranitrate Tetrahydrate, $\left[\mathrm{Cu}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2}\right)_{4}\right]\left(\mathrm{NO}_{3}\right)_{4} \cdot \mathbf{4} \mathbf{H}_{2} \mathrm{O}$

By M. E. Kamwaya*
School of Physics, University of Science Malaysia, Minden, Penang, Malaysia
E. Papavinasam
Department of Physics, Yadava College, Madurai-625 014, India
and S. G. Teoh
School of Chemical Sciences, University of Science Malaysia, Minden, Penang, Malaysia

(Received 18 May 1983; accepted 20 June 1984)

Abstract

M_{r}=839.6\), triclinic, $P \overline{1}, a=12.499$ (1), $b=8.717$ (1),$\quad c=8.070$ (1) $\AA, \quad \alpha=77.74$ (2),$\quad \beta=$ 82.44 (1), $\gamma=71.48(1)^{\circ}, V=812.8 \AA^{3}, D_{x}=1.715$, D_{m} (flotation) $=1.758 \mathrm{Mg} \mathrm{m}^{-3}, Z=1, F(000)=434$, $\lambda($ Mo $K \alpha)=0.71069 \AA, \mu=1.35 \mathrm{~mm}^{-1}$, room temperature, $R=0.048$ for 2225 observed reflexions. Four alanine groups form centrosymmetric dimers with two Cu atoms; they are nearly mutually perpendicular and are in cis configuration. The $\mathrm{Cu}-\mathrm{Cu}$ separation is 2.639 (1) \AA. The four carboxyl O atoms and an axial water O coordinate with Cu to form a square pyramid. The $\mathrm{Cu}-\mathrm{O}$ (alanyl) bonds are in the range 1.961 (4)1.981 (4) \AA and $\mathrm{Cu}-\mathrm{O}$ (water) is 2.124 (3) \AA.

[^0]0108-2701/84/122043-03\$01.50

Introduction. Alanine residues have been the subject of intensive study because of the variety of conformations in which alanine is found to be bonded in certain peptides, appearing, for instance, repetitively in the form of an Ala-Pro sequence over the light chain of rabbit skeletal muscle myosin (Kamwaya, Oster, Bradaczek, Ponnuswamy, Parthasarathy, Naraj \& Balaram, 1982) and because of some interesting physical properties of complexes of metallic salts with amino acids (Griffith, 1943; Blakeslee \& Hoard, 1956; Tomita, 1961; Jose, Pant \& Biswas, 1964; Jose \& Pant, 1965; Rao \& Viswamitra, 1972; Herak, Prelesnik, Manojlović-Muir \& Muir, 1974). In particular, it has been observed that certain derivatives of β-alanine with $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ form a bacteriocidal composition © 1984 International Union of Crystallography
against Bacillus subtilis (Aeloney, 1982). Hence we have determined the structure of the title compound.

Experimental. Copper nitrate trihydrate and β-alanine in stoichiometric proportion, dissolved in distilled water, filtered and then allowed to evaporate slowly at $T=297 \mathrm{~K}$; green, transparent crystals obtained in the form of platelets. Approximate cell parameters determined from oscillation and Weissenberg photographs. Infrared spectra in KBr pellet using Perkin Elmer model 577 spectrometer at USIC, Madurai Kamaraj University, confirmed the presence of water molecules (broad peak at $3755 \mathrm{~cm}^{-1}$). Final unit-cell parameters and intensity data measured from a crystal $0.25 \times 0.30 \times$ 0.55 mm in the range $1.4<\theta<26^{\circ}$ on a Syntex $P 2_{1}$ diffractometer (Nicolet, 1975) of the School of Physics, USM. Total of 3211 reflexions collected, of which 2225 considered observed with $I>2.5 \sigma(I)$; index range $h-14 / 15, k-10 / 10, l 0 / 9$; standard reflexions showed no significant variation; Mo $K \alpha$ radiation, graphite monochromator. No absorption corrections. Structure solved by the heavy-atom method using SHELX76 (Sheldrick, 1976). Refinement (on F) favoured $P \overline{1}$ rather than $P 1$. H atoms were fixed at ideal positions with bond lengths of $1.08 \AA$. Introduction of anisotropic temperature factors for non- H atoms and isotropic temperature factors for H atoms reduced R to a final value of 0.048 ($R_{w}=0.047$). Final max. and min. difference electron densities 0.45 and $-0.33 \mathrm{e} \AA^{-3}$, respectively. $(4 / \sigma)_{\max }=0.0005$. The weighting scheme $w=1 \cdot 2615 /\left[\sigma^{2}(F)+0.000659 F^{2}\right]$ was used; atomic scattering factors were taken from International Tables for X-ray Crystallography (1974).

Discussion. Positional and equivalent isotropic thermal parameters are given in Table 1,* bond angles and lengths in Table 2; Fig. 1 is a view of the complex along c.

Four alanyl residues bridge two Cu atoms, forming a centrosymmetric dimer. Adjacent pairs of alanyl residues are mutually perpendicular and, therefore, the alanyl residues about Cu are in cis configuration, while their N atoms are in trans configuration. The centre of inversion of the dimers lies between the two Cu atoms. The $\mathrm{Cu}-\mathrm{Cu}$ separation is 2.639 (1) \AA.

The alanyl, nitro and carboxyl groups are involved in intermolecular hydrogen bonds, forming a network of hydrogen bonds of type $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}-\mathrm{N}, \mathrm{O} \cdots \mathrm{H}-\mathrm{O}(W)$ and $\mathrm{O}(W)-\mathrm{H} \cdots \mathrm{O}-\mathrm{N}$. The closest contact distances between nitrate ions are $\mathrm{N}(3) \cdots \mathrm{O}(24) 3.048$ (6) and

[^1]$\mathrm{N}(4) \cdots \mathrm{O}(23) \quad 3.325 \AA$. The nearest $\mathrm{Cu}-\mathrm{O}$ (water) contact is the $\mathrm{Cu}-\mathrm{O}(5)$ normal covalent distance of $2 \cdot 12$ (3) \AA. The four carboxyl O atoms and this axial water O coordinate with Cu to form a square pyramid (bond angles at Cu are listed in Table 2).
The $\mathrm{Cu}-\mathrm{O}$ bond distances (see Table 2) are longer than the mean value of $1.96 \AA$ found in similar

Table 1. Atomic coordinates and equivalent isotropic temperature factors (Willis \& Pryor, 1975)

$B_{\text {eq }}=\frac{8}{3} \pi^{2} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i}, \mathbf{a}_{j}$.				
	x	${ }^{\prime}$	z	$B_{\text {eq }}\left(\dot{\text { ® }}^{2}\right)$
Cu	0.0741 (1)	-0.1198 (1)	0.0924 (1)	$2 \cdot 4$ (9)
$\mathrm{O}(1)$	-0.0155 (3)	-0.2596 (4)	0.0641 (5)	$3 \cdot 5$ (3)
$\mathrm{C}(1 A)$	-0.1031 (5)	-0.2027 (6)	-0.0187 (7)	$2 \cdot 9$ (9)
$\mathrm{C}(2 A)$	-0.1662 (5)	-0.3231 (7)	-0.0275 (8)	$3 \cdot 4$ (1)
$\mathrm{C}(3 A)$	-0.2587 (5)	-0.2564 (7)	-0.1506 (7)	$3 \cdot 4$ (4)
$\mathrm{N}(1 A)$	-0.3515 (4)	-0.1195 (5)	-0.0941 (6)	$3 \cdot 3$ (3)
$\mathrm{O}(2)$	-0.0316 (3)	-0.0511 (4)	0.2871 (4)	$3 \cdot 1$ (4)
$\mathrm{C}(18)$	-0.1231 (4)	0.0662 (7)	0.2698 (6)	$2 \cdot 8$ (4)
$\mathrm{C}(2 \mathrm{~B})$	-0.1977 (4)	$0 \cdot 1006$ (7)	0.4275 (7)	$3 \cdot 3$ (4)
$\mathrm{C}(3 \mathrm{~B})$	-0.2909 (5)	0.2655 (7)	0.4035 (8)	$3 \cdot 7$ (1)
N(1B)	-0.3794 (4)	0.2600 (6)	0.2991 (6)	$3 \cdot 5$ (8)
O(3)	0.1425 (3)	0.0563 (4)	0.0915 (5)	$3 \cdot 2$ (1)
$\mathrm{O}(4)$	0.1576 (3)	-0.1526 (5)	-0.1298 (5)	$3 \cdot 3$ (9)
$\mathrm{O}(5)$	0.1940 (3)	-0.3124 (5)	$0 \cdot 2405$ (5)	$4 \cdot 0$ (1)
$\mathrm{N}(3)$	-0.4251 (5)	-0.1491 (7)	0.3851 (7)	4.1 (8)
O(13)	-0.3581 (5)	-0.0981 (6)	0.2772 (6)	$6 \cdot 1$ (1)
O(23)	-0.5291 (4)	-0.0882 (6)	0.3758 (6)	$5 \cdot 6$ (6)
O(33)	-0.3903 (4)	-0.2626 (6)	0.5045 (6)	6.5 (5)
N(4)	-0.5229 (5)	-0.3490 (6)	$0 \cdot 1254$ (7)	$3 \cdot 8$ (1)
$\mathrm{O}(14)$	-0.5741 (4)	-0.2181 (5)	0.0356 (6)	$5 \cdot 2$ (6)
O(24)	-0.4209 (4)	-0.3796 (6)	$0 \cdot 1466$ (6)	$5 \cdot 2$ (5)
O(34)	-0.5715 (4)	-0.4526 (6)	$0 \cdot 1943$ (7)	$6 \cdot 3$ (4)
$\mathrm{O}(1 \mathrm{l})$	-0.0209 (4)	-0.2936 (6)	-0.4092 (6)	$6 \cdot 2$ (6)
$\mathrm{O}(2 \mathrm{~W})$	-0.1617(4)	-0.4435 (5)	-0.5041 (6)	$5 \cdot 7$ (7)

Table 2. Bond lengths (\AA), angles $\left({ }^{\circ}\right)$ and selected torsion angles $\left({ }^{\circ}\right)$

$\mathrm{O}(1)-\mathrm{Cu}$	1.961 (4)	$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(2)$	89.1 (2)
$\mathrm{O}(2)-\mathrm{Cu}$	1.981 (4)	$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(3)$	168.5 (1)
$\mathrm{O}(3)-\mathrm{Cu}$	1.978 (4)	$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{O}(3)$	$90 \cdot 2$ (2)
$\mathrm{O}(4)-\mathrm{Cu}$	1.980 (4)	$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(4)$	$90 \cdot 1$ (2)
$\mathrm{O}(5)-\mathrm{Cu}$	$2 \cdot 124$ (3)	$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{O}(4)$	168.6 (1)
$\mathrm{Cu} \cdots \mathrm{Cu}$	$2 \cdot 639$ (1)	$\mathrm{O}(3)-\mathrm{Cu}-\mathrm{O}(4)$	88.4 (2)
		$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(5)$	94.6 (2)
$\mathrm{O}(1)-\mathrm{C}(1 A)$	1.264 (6)	$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{O}(5)$	95.7 (1)
$\mathrm{C}(1 A)-\mathrm{O}\left(3^{*}\right)$	1.255 (6)	$\mathrm{O}(3)-\mathrm{Cu}-\mathrm{O}(5)$	96.9 (1)
$\mathrm{C}(1 A)-\mathrm{C}(2 A)$	1.518 (7)	$\mathrm{O}(4)-\mathrm{Cu}-\mathrm{O}(5)$	95.7 (2)
$\mathrm{C}(2 A)-\mathrm{C}(3 A)$	1.513 (7)		
$\mathrm{C}(3 A)-\mathrm{N}(1 A)$	1.480 (6)	$\mathrm{Cu}-\mathrm{O}(1)-\mathrm{C}(1 A)$	121.6 (3)
		$\mathrm{O}(1)-\mathrm{C}(1 A)-\mathrm{C}(2 A)$	116.4 (4)
$\mathrm{O}(2)-\mathrm{C}(1 \mathrm{~B})$	$1 \cdot 269$ (6)	$\mathrm{C}(1 A)-\mathrm{C}(2 A)-\mathrm{C}(3 A)$	$114 \cdot 1$ (5)
$\mathrm{C}(1 B)-\mathrm{O}\left(4^{*}\right)$	1.261 (6)	$\mathrm{C}(2 A)-\mathrm{C}(3 A)-\mathrm{N}(1 A)$	111.4 (4)
$\mathrm{C}(1 B)-\mathrm{C}(2 B)$	1.501 (7)		
$\mathrm{C}(2 B)-\mathrm{C}(3 B)$	1.529 (7)	$\mathrm{Cu}-\mathrm{O}(2)-\mathrm{C}(18)$	122.9 (3)
$\mathrm{C}(3 B)-\mathrm{N}(1 B)$	1.494 (6)	$\mathrm{O}(2)-\mathrm{C}(1 B)-\mathrm{C}(2 B)$	117.4 (4)
		$\mathrm{C}(1 B)-\mathrm{C}(2 B)-\mathrm{C}(3 B)$	114.2 (5)
$\mathrm{N}(3)-\mathrm{O}(13)$	$1 \cdot 240$ (6)	$\mathrm{C}(2 B)-\mathrm{C}(3 B)-\mathrm{N}(1 B)$	110.4 (4)
$\mathrm{N}(3)-\mathrm{O}(23)$	1.243 (6)		
$\mathrm{N}(3)-\mathrm{O}(33)$	1.236 (6)	$\mathrm{O}(13)-\mathrm{N}(3)-\mathrm{O}(23)$	121.0 (6)
		$\mathrm{O}(13)-\mathrm{N}(3)-\mathrm{O}(33)$	$120 \cdot 8$ (6)
$\mathrm{N}(4)-\mathrm{O}(14)$	1.242 (6)	$\mathrm{O}(23)-\mathrm{N}(3)-\mathrm{O}(33)$	118.2 (6)
$\mathrm{N}(4)-\mathrm{O}(24)$	1.245 (6)		
$\mathrm{N}(4)-\mathrm{O}(34)$	$1 \cdot 241$ (6)	$\mathrm{O}(14)-\mathrm{N}(4)-\mathrm{O}(24)$	120.4 (6)
		$\mathrm{O}(14)-\mathrm{N}(4)-\mathrm{O}(34)$	121.1 (5)
		$\mathrm{O}(24)-\mathrm{N}(4)-\mathrm{O}(34)$	118.5 (5)
	$\begin{aligned} & \mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(2)-\mathrm{C}(1 B) \\ & \mathrm{C}(1 A)-\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(2) \end{aligned}$	(1B) $-85.5(1)$	
		(2) 83.9 (4)	

Fig. 1. Schematic drawing of the dimer (projection along e). Adjacent pairs of alanyl moieties are mutually perpendicular and are in cis configuration, while the alanyl N atoms are in trans configuration. The centre of inversion lies between the two Cu atoms. The four carboxyl O atoms and an axial water O coordinate with Cu to form a square pyramid.
complexes (Ueki, Ashida, Sasada \& Kakudo, 1968), and references cited therein), but comparable to the value of $1.975 \AA$ in $\operatorname{bis}(\beta$-alanine $)$ copper(II) tetrahydrate (Kamwaya \& Teoh, 1984). The angles $\mathrm{O}(1)-$ $\mathrm{Cu}-\mathrm{O}(2), \mathrm{O}(2)-\mathrm{Cu}-\mathrm{O}(3), \mathrm{O}(3)-\mathrm{Cu}-\mathrm{O}(4)$ and $\mathrm{O}(4)-$ $\mathrm{Cu}-\mathrm{O}(1)$ fall within the range $82-96^{\circ}$ as reported for Cu compounds by Ueki et al. (1968), while $\mathrm{O}(1)-$ $\mathrm{Cu}-\mathrm{O}(3)$ and $\mathrm{O}(2)-\mathrm{Cu}-\mathrm{O}(4)$ are in the range $160-$ 174° as summarized for Ag compounds (Rao \&

Viswamitra, 1972, and references cited therein). Angles $\mathrm{O}(1)-\mathrm{C}(1 A)-\mathrm{O}\left(3^{*}\right)\left[125.8(1)^{\circ}\right]$ and $\mathrm{O}(2)-\mathrm{C}(1 B)-$ $\mathrm{O}\left(4^{*}\right)\left[125.0(1)^{\circ}\right]$ are larger than the values of 122.5 and $122 \cdot 2^{\circ}$ for analogous angles previously reported by us (Kamwaya \& Teoh, 1984).

The authors thank Professor K. S. Chandrasekaran, and Drs R. K. Rajaram and Natarajan for their interest and help at various stages of this work and Mrs Sabariah Saito for typing the manuscript.

References

Aeloney, D. (1982). Chem. Abstr. 96, No. 162140. Israeli Patent No. 49365 (1981).
Blakeslee, A. E. \& Hoard, J. L. (1956). J. Am. Chem. Soc. 78, 3029-3033.
Griffith, R. L. (1943). J. Chem. Phys. 11, 499-505.
Herak, R., Prelesnik, B., Manollović-Muir, L. J. \& Muir, K. W. (1974). Acta Cryst. B30, 229-231.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Jose, P. \& Pant, L. M. (1965). Acta Cryst. 18, 806-810.
Jose, P., Pant, L. M. \& Biswas, A. B. (1964). Acta Cryst. 17, 24-28.
Kamwaya, M. E., Oster, O., Bradaczek, H., Ponnuswamy, M. N., Parthasarathy, S., NaraJ, R. \& Balaram, P. (1982). Acta Cryst. B38, 172-176.
Kamwaya, M. E. \& Teoh, S. G. (1984). J. Fiz. Malaysia, 5, 1-7.
Nicolet (1975). Syntex P2 Diffractometer Manual. Cupertino, California.
Rao, J. K. M. \& Viswamitra, M. A. (1972). Acta Cryst. B28, 1484-1496.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Tomita, K. (1961). Bull. Chem. Soc. Jpn, 34, 297-300.
Ueki, T., Ashida, T., Sasada, Y. \& Kakudo, M. (1968). Acta Cryst. B24, 1361-1369.
Willis, B. T. M. \& Pryor, A. W. (1975). Thermal Vibrations in Crystallography, pp. 101-102. Cambridge Univ. Press.

Acta Cryst. (1984). C40, 2045-2047

Structure of $\mathrm{Bis}\left(\mu_{3}\right.$-phenylimido)-tris(tricarbonyliron)(2Fe- Fe), $\left[\mathrm{Fe}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)_{2}(\mathrm{CO})_{9}\right]$

By William Clegg,* George M. Sheldrick and Dietmar Stalke

Institut für Anorganische Chemie der Universität, Tammannstrasse 4, D-3400 Göttingen, Federal Republic of Germany
and Sumit Bhaduri and Hanif K. Khwaja
Alchemie Research Centre Private Limited, CAFI Site, PO Box 155, Belapur Road, Thane-400601, Maharashtra, India
(Received 8 June 1984; accepted 28 August 1984)

Abstract. $\quad M_{r}=601 \cdot 9$, monoclinic, $\quad P 2_{1} / n, \quad a=$ $11 \cdot 282$ (2), $\quad b=13 \cdot 658$ (1), $\quad c=15 \cdot 379$ (4) $\AA, \quad \beta=$ $99.81(2)^{\circ}, \quad V=2335.1 \AA^{3}, \quad Z=4, \quad D_{x}=1.712$ $\mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{MoK} \alpha)=0.71069 \AA, \quad \mu=1.89 \mathrm{~mm}^{-1}$,

[^2]0108-2701/84/122045-03\$01.50
$F(000)=1200, \quad T=291 \mathrm{~K}, \quad R=0.029$ for 3495 observed reflections. The three Fe atoms form an approximately isosceles triangle, with $\mathrm{Fe}-\mathrm{Fe} 2.484$ (1) and $2.421(1) \AA, \mathrm{Fe} \cdots \mathrm{Fe} 3.044$ (1) $\AA, \mathrm{Fe}-\mathrm{Fe}-\mathrm{Fe}$ $76.7(1)^{\circ}$. All carbonyl groups are terminal. The NPh ligands are triply bridging, with $\mathrm{Fe}-\mathrm{N} 1.926$ (2) to 1.969 (2) $\AA, \mathrm{N} \cdots \mathrm{N} 2.301$ (6) \AA.
© 1984 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom coordinates, selected torsion angles and the results of mean-plane calculations have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39601 (15 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^2]: * Present address: Department of Inorganic Chemistry, The University, Newcastle upon Tyne NE1 7RU, England.

